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The physical mechanism governing the centring of a hollow liquid shell in capillary 
oscillations, which has been observed in experiments, is investigated theoretically. 
First, the shell is assumed to  be inviscid and to have a thickness that is much less 
than its spherical radius. A system of one-dimensional nonlinear equations of motion 
is derived using a thin-sheet model. From a numerical study the nonlinear effects of 
the wave are found to cause the core to oscillate slowly relative to  the shell while the 
centre of mass of the whole system remains stationary. The effects of small viscosity 
are then considered in an approximation. Finally the strength of the centring 
mechanism is compared with that of the decentring effect due to buoyancy. The 
findings are consistent with the limited experimental information available. 

1. Introduction 
In  recent years there has been much study of the dynamics of compound drops 

(Johnson & Sadhal 1985), motivated by an interest in producing capsules for inertial 
confinement fusion, and other potential applications (Lee et al. 1986). A compound 
drop consists of a fluid core enclosed within a fluid shell immersed in a fluid medium. 
Saffren, Elleman & Rhim (1982) found that a compound drop oscillates under the 
influence of surface tension like a coupled pair of pendula, with the sloshing mode in 
which the two interfaces move by 180" out of phase, and the bubble mode in which 
they move in phase. 

Many experiments have indicated a tendency for a compound drop in oscillation 
to  become concentric. I n  a zero-gravity experiment (using a NASA KC-135 aircraft), 
water droplets with injected air bubbles consistently assumed concentric spherical 
form (T. G. Wang and D. D. Elleman 1981, private communication). Free-falling 
hollow liquid shells, about 1 mm in radius, produced by annular jet instability, 
tended to remain concentric (Kendall 1986; Lee & Wang 1986). I n  an acoustic 
levitation experiment (Trinh 1983), the hollow shell produced by introduction of air 
into a 1 mm drop was found to resist breakup when oscillation was induced. 

It has also been demonstrated (Saffren et al. 1982) in a neutral buoyancy tank that 
a compound drop formed of immiscible liquids becomes concentric when excited int,o 
oscillations. A similar effect has been seen (Lee et al 1982) when a layer of liquid 
coating a small solid sphere in acoustic levitation was forced into a capillary 
oscillation. 

I n  this study we are interested in the first group of experiments, which involve 
hollow liquid shells. A shell experiences negligible viscous stress on its two interfaces, 
so that if the relevant Reynolds number is large ($6), viscosity is negligible. We shall 
find the viscous correction later. But even without viscosity the problem is not 

14 FLM 188 



412 C. P .  Lee and T. G .  Wang 

trivial. According to a linear analysis (Saffron et al. 1982) the core sees a neutral 
potential inside the shell, implying that centring must be a nonlinear effect. 

In the second group viscosity plays a dominant role in centring because viscous 
friction is strong, as is evident from the fact that an oil droplet can stay immersed just 
below a water surface for a long time. Even in the linear limit the core cannot see a 
neutral potential because the distribution of viscous stress must be affected by the 
uneven shell thickness. Consideration of nonlinearity is not necessary. 

For the hollow liquid shell, if the shell thickness is much less than its mean radius 
we can model it as a thin sheet, reducing the problem to a one-dimensional one. In 
previous work (Lee & Wang 1986) we described the annular jet instability by a thin- 
sheet model, ignoring the flow structure across the sheet. In  this work the model is 
amended to include a description of the variation in the shell thickness as the liquid 
translates along the sheet. 

2. Qualitative description of the model 
Let the origin of the coordinate system be chosen inside the thin liquid shell and 

assume axisymmetry. Polar coordinates ( r ,  6) will be used, but only 8 will appear in 
the final form as a spatial coordinate. 

Let us call the outer surface of the shell R, and the inner one R,. If we draw a line 
from the origin to the outer surface intersecting the inner surface a t  point Pi and the 
outer one a t  point Po we can construct the midpoint Q between the two points (see 
figure l), the locus of which is R = i(R,+ Ri). In  our thin-sheet model the position of 
the shell is defined by R as a function of 6.  When the shell is spherical, concentric, 
and centred a t  the origin, R is a constant R, regarded as the equilibrium radius of the 
shell, and the thickness of the shell is a constant, D,. Let us define 8 = DJR,. When 
the shell does not sit at the origin, R is a displaced spherical surface of radius R, to 
a good approximation. In general R can be wavy and time dependent. At every point 
on the surface R we can construct a unit normal vector n pointing outward and a unit 
tangential vector s pointing in the increasing @-direction (figure 1) .  

We need to specify the distribution of liquid around the shell. Let a normal to the 
surface R be drawn a t  Q ,  intersecting R, a t  point &, and Ri a t  point Qi (figure 1) .  
The distance between Q, and Qi is called the thickness D of the shell there ; and the 
product ,u = pD, where p is the density of the liquid, is called the surface density. In 
the spherical concentric case D equals D,, and ,u is just ,us = pD,. The relation 
between (R,,u) and (R,, Ri) is invertible. 

The velocity distribution of the shell is described below. In  the thin-shell limit the 
tangential velocity is almost uniform across the liquid layer ; therefore in the model 
we assign to the shell a tangential velocity v,(O, t ) .  In  the physical shell, the normal 
velocity consists of one part representing the net translation of the shell in the 
normal direction, and the other the internal flow, which in general changes sign near 
the mid-surface of the shell. The former is taken to be the normal velocity vn(O, t )  of 
the shell in the model. But the latter will be ignored since it does not carry a net 
normal momentum, and its magnitude is negligible in the thin-shell limit. The shell 
in the model therefore does not have an internal flow. 

We assume that the gaseous core is incompressible, and that its pressure is uniform 
in space but in general dependent on time. The medium pressure, serving only as a 
reference level here, will be set to zero. 

If the core pressure P is given, and if the two interfaces R, and R, are known we 
can evaluate the pressures p ,  and pi at any point immediately on the liquid side of 
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FIGURE 1. Basic quantities in the model. Given 0, p ,  and p ,  are evaluated a t  points marked by 
crosses near points Po and pi, whereas p,* and p: are evaluated at  points marked by crosses near 
Q, and Qi. 

an interface. The pressure inside the liquid can then be considered to vary almost 
linearly across the small shell thickness. Let us define a mean pressure p at  a point 
0 on R as p = &(p,* +p:), where the asterisks denote that the quantities are 
evaluated in the immediate neighbourhoods of the points Q, and Qi along the normal 
vector (figure 1), not the points Po and P, along the radial vector. The starred 
quantities can be derived from the non-starred ones using a Taylor-series expansion. 
Similarly the normal pressure difference Aq at  8 on R is Aq = p*-p,*. Furthermore, 
we can write Aq = A p +  P ,  where Ap means the part of Aq due directly to the 
distortions of the interfaces. 

I n  deriving the momentum equations we have the tangential motion governed by 
the tangential gradient of p and the normal motion by Aq, We shall obtain the 
continuity equation for the mass flow in the shell. Full nonlinearity will be retained. 
To close the equations we shall obtain an explicit expression for P in terms of other 
quantities by using the assumptions about the core, and the normal momentum 
equation. Note that p and A p  are determined by R and p, but that P is a functional 
of all of R, ,u, v, and v,, 

We shall solve the equations numerically for R, p, v, and v, as an initial-value 
problem in a parameter study. The error involved in describing the shell using a thin- 
sheet model is essentially of the order of S2. 

We have checked the performance of the thin-sheet, model compared to that of the 
potential theory (Taylor 1959) in a study of the waves on a flat liquid sheet in the 
linear limit. Also, we have found that the same approach in the study of a thin liquid 
column leads to a well-known one-dimensional theory of the jet (Lee 1974). 

I4  1 
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3. Mathematical formulation 
We shall use the modelling framework outlined in 92 to  derive the following. 

3.1. Continuity equation 
Given R and p as functions of 8 a t  t, consider an axisymmetric elemental ring of 
the shell of width 6s, lying between 0 and 0 + 68 a t  a radial distance R from the origin. 
Conservation of mass of the elemental ring requires that 

d 
- (27cRp sin 8 6s) = 0, (3.1) dt 

where dldt means the convective derivative. From the product rule of differentiation 
the left-hand side of (3.1) can be split into four terms carrying dRldt, dpldt, d8/dt 
and d6sldt. 

From geometrical and kinematic considerations we have 

and 

where 

- = us sin $+ v, cos $, 
dR 
dt 

d8 
dt 

R- = V, C O S $ - - V ,  sin$, 

1 aR 
tan$ = --, 

R a0 

(3.2) 

(3.3) 

(3.4) 

is the slope of the sheet a t  8 (figure 1) .  
To evaluate d6s/dt, let 6s change to  6s' when t changes to t + 6t. To find 6s' we need 

to know the s-component of the relative velocity between the two ends of 6s; the 
n-component, being a higher-order correction, can be neglected. The velocity is given 
by av/aO multiplied by the angle subtended by the two ends at the origin, where 

u = v,S+v,n. (3.5) 

Thus 

in which the fraction preceding 6t on the right-hand side is the angle just mentioned. 
Noting that 

s = siny?e,+cosy?eo, (3.7) 
and n = cos $ er - sin $ e,, (3.8) 

we can calculate au/a0 using (3.5), substitute the result into (3.6) and, after using 
(3.4), obtain 

---- - dt 6t R a02 RZ ("")I) a0 . (3.9) [ a2A 

The last derivatives dpldt is written directly from the definition of d/dt, using the 
fact that the system has no dependence on the radial coordinate r :  

(3.10) 
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where the quantity inside the bracket on the right-hand side is identified as the 
component of v in the &direction. 

Putting all the derivatives (3.2), (3.3), (3.9) and (3.10) into (3.1), after some 
algebra, we have 

(3.11) 

where K = v, cos $--vn sin $, (3.12) 

v, cos 8 
for 0 < 8 < 7c, 

and 

in which 

C = - 2 cos$+sinz$ cos$-f--- 
R " 

sin + cos 8 
sin 8 

for0 < 8 < 7c, 

for 8 = 0 or 7c. azR/aez 
R 

(3.13) 

(3.14) 

(3.15) 

Here K is the 8-component of v arising from the convective derivative dldt defined 
in (3.10). C has the meaning of the curvature of the surface defined by R. The 
functions f and fa are well-behaved in 19 in the interval [0,7c]. 

3.2. Kinematic relation 

We need a relation between aR/at and v .  Because we have defined the coordinates 
(s, n) in such a way that s lies in the tangential direction of the curve R, us does not 
contribute to the rate of change of R with t. Then i t  is obvious from geometrical and 
kinematic considerations that 

aR v, - - - -  
at cos $, 

(3.16) 

3.3. Momentum equations 

Applying Newton's second law to the elemental ring and using the forces discussed 
in $ 2  we have 

(3.17) 
d 
- (27rRpu sin 8 6s) = 2nR sin % 6s ( -'% ?&s + Aqn , 
dt 

where the first term inside the bracket on the right-hand side is proportional to the 
tangential gradient of p ,  and the second one is the total normal pressure. Using (3.1), 
the factor 2xRp sin8 6s on the left-hand side of (3.17) commutes with dldt and can 
be factored out, leaving (3.17) as 

1 

,udt=-------s+Aqn. du ,u cos$ap 
p~ ae (3.18) 

To evaluate dv ld t  on the left-hand side we substitute s, as defined in (3.7), and n, as 
defined in (3.8), into (3.5), apply the operation dldt given in (3.10) (ignoring ,u there), 
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use the definition of $ given in (3.4) and involve the kinematic condition given in 
(3.16). The resulting equation can be separated into the s- and n-components : 

(3.19) 

(3.20) 

Here K has been defined in (3.12); H represents curvilinear effects, i.e. those due to 
the time-dependence of s and n :  

K cos $ av, cos $ sin $ v, cos3 $ a2R vn sin3 $ 
R ‘  

-+ RZ a02 
H = (v, sin $ + v, cos $) - 

R R ae+ R 
(3.21) 

The coefficient A, is taken to be unity for the present but will take on other values 
when we make the equations dimensionless. 

3.4. The derivation of p and Ap 
In  the following we shall consider R and p as given in the evaluation of p and Ap. 

In  figure 1 the distance D, between the points Po and P, is Dlcos $. Therefore with 
Q defined as the midpoint between Po and P, and the relation between D and p. we 
have 

and 

P R, = R+ 
2p cosl+h’ 

2p cos l+h. 
R . = R -  P 

(3.22) 

(3.23) 

Following (3.14) we have the curvature C, of the outer surface R, and Ci of the inner 
surface Ri respectively given by 

2 cos$,+sin2$, R, ae2 

C . = -  2 cos $i + sin2 $i cos $i - fi - ’ Ri “ 
where, as in (3.4), we have defined 

tan$ 1 aROi  
O,‘ R, ,~  ae ’ 

and similarly, as in (3.15), we have defined 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Here and in the rest of this work the subscript ‘0, i ’  denotes ‘the outer or the inner 
surface ’. Then we can write down p ,  and pi, from consideration of the boundary 
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condition pertaining to the normal stress, at each of the two interfaces of the physical 
shell, as 

Po = UCO, 

and 

The corresponding p,* and p: are given by 

pi  = - aC, + P. 

and 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

where the asterisks signify that the quantities are evaluated at  the positions 
explained in $2. 

We wish to find explicit expressions for p,* and p r  by relating them to p ,  and pi.  
Equivalently, we need to express C,* and C: in terms of C, and Ci. Let point Q, be 
at  angle 8-60,, and Qi be at  8+68, in figure 1. Then applying Taylor-series 
expansions we obtain 

(3.32) 

In this equation and in some of what will follow we keep terms up to O ( P )  because 
we expect cancellations at lower orders in certain manipulations. 

To find 60, and 68, we need the following. Let Do be the distance between Q and 
Q,, and Di be that between Q and Q,, such that their sum is the local thickness D. 
It is easy to  see that 

, (3.33) 
Do, sin @ - Do, sin @ ( Do, i~ $) 

R 
6eo,i = 

Rf:D,,icos@- 

in which we have used the fact that D is much less than R. This in turn requires us 
to find Do and Di. 

Referring to figure 2, which shows some other details of the same part of the shell 
drawn in figure 1, we note that 

Do, = tD, cos @ (1 f tan @ tan Po, i), (3.34) 

where tanp, and tanpi are the slopes of R, and Ri relative to R there. 
The values of tanp, and tanpi are found as follows. If 0 is increased by 68, there 

is a corresponding displacement RiW/cos@ along the surface R, leading to a new 
position where Do, changes by @Do, i/a8) 68. Therefore 

aD,, cos @ 
t anp  . = -- 

, , I  ae R ’ 
(3.35) 

Substituting (3.35) into the right-hand side of (3.34), iterating for Do,i, using the 
definition po,i = PD,,~ and recalling the meaning of D, we have 

1 ( 2pR ae . 
sin $ ap 

i f  -- (3.36) 

Using (3.36), (3.33) and the relation between p’s and D’s we can obtain the 
expressions for C,*,i in (3.32) in terms basically of R and p. Then we can find P,*,~ in 
(3.30) and (3.31) explicitly to the second order in 8. Instead of writing them here, we 

(3.37) 
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0 

FIQURE 2 .  Geometry pertaining to (3.34) in the calculation of pressure. 

and 

(3.38) 

3.5. Conservation of mass and volume 
Conservation of mass of the shell is expressed by 

(3.39) 

being constant. 
Similarly, conservation of volume of the core is given by 

d0 sin0R3 = $nR; (3.40) 

being constant. 

3.6. The core pressure P 
To derive P we first consider the incompressibility of the core. Differentiating (3.40) 
by t we obtain 

aR 
d0s in0R2-=o.  

at 
(3.41) 

A second differentiation with respect to t ,  and use of the kinematic equation (3.16) 
gives 

(3.42) 
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We then have to consider the kinematic condition (3.16). Using (3.4) and (3.16) we 
obtain 

(3.43) 

Next we consider the normal momentum equation (3.20). We move P to the 
left-hand side and everything else to the right-hand side, multiply both sides by 
R2/(,u cosy?) and integrate over 8 from 0 to R. On the left-hand we use the assump- 
tion that P is uniform in space and take it out of the integral sign. On the right-hand 
side the integrand contains av,/at, and that is where we can use (3.43) and (3.42) 
successively. 

Finally after rearranging terms and using (3.21) we have 

(3.44) 

where 

a2R 
(vi cos2 $- v i  sin2 $) - 

a 8 2  

- Rvi (1 + sin2 y?) - Rvi(2 + sin2 $) ] -~ R2Ap (3.45) 
/!l cosy?' 

in which A, is unity for the time being but will be assigned values when we make the 
equations dimensionless. 

3.7. Conservation of energy 
The energy of the shell consists of the kinetic energy E,  of the liquid, the potential 
energy (Ep)s  due to variation in thickness of the shell, and the potential energy 
(EP)b due to distortion of the shell from sphericity. Both potential energies are 
associated with changes in the total surface area of the interfaces and exist because 
of surface tension. The total energy must be conserved in the absence of an external 
force. 

In the thin sheet model the kinetic energy is 

E ,  = nA2[d8sinB R2p(V: + wi) 
cosy? ' 

(3.46) 

in which A, is the same as that in (3.45). The potential energy (Ep)b, ignoring the she11 
finite thickness, is 

8nuR;. (3.47) 
R2 

(EP)b = 4nu 1 d8 sin B a - 
On the right-hand side we have included a factor of 2 because the shell has two 
interfaces. 

To account for the energy due to the unevenness in thickness of the shell we need 
to consider both the outer and inner surfaces. The outerlinner surface has an area 
of 

(3.48) 



420 

containing a volume of 

C. P .  Lee and T .  G .  Wang 

(3.49) 

In  these two equations Ro*i is given by (3.22) or (3.23), in which I(. is not a constant 
in 8 in general. 

Imagine that we now smooth out the ‘wrinkle’ on the surface Ro9i by replacing 
$ with vo,i which is constant in 8 (but depends on t in general), while preserving its 
volume V,,i .  The surface then becomes 

(3.50) Vo, i . So,i = R+- 
- p  cos$’ 

and the surface area is reduced to 

(3.51) 

but the volume maintains the same value 

vo, = sin 8 s:, i, (3.52) 

although the integral on the right-hand side has a different integrand. Equating the 
right-hand sides of (3.49) and (3.52), using (3.50) and the fact that vo,i is constant in 
8, we obtain a cubic algebraic equation in vo,i which can be solved readily for a real 
positive root. Substituting the value of vo,i into (3.50), we can find Bo,i in (3.51). 

The potential (Ep)s is finally defined as the gain in surface energy when the shell 
goes from an ‘unwrinkled’ state to a ‘wrinkled’ one: 

(Ep)s  = a(Ao-Bo+Ai-Bi).  (3.53) 

(3.54) 

The total energy is a constant of motion given by 

E = E ,  + (EPh + (Ep)s. 

3.8. Centre of ma88 and geometrical centre 

I n  the absence of an external force the centre of mass, given by 

R3p cos 0 
cos$ ’ 

is stationary in space. But the geometrical centre of the shell, defined as 

Z =  

rdBsinH-- R3 cos8 
cos lh 

.I” 

Ih 0 2  ’ 

(3.55) 

(3.56) 
n- J, d8 sin 8 ~ 

cos $ 

can move as the liquid in motion adjusts itself in such a way as to maintain Z,, 
constant. Let 2, = Z-Z,,, the position of the geometrical centre relative to the 
fixed centre of mass. I n  this work the centring condition of the shell is monitored by 
following the time-evolution of 2,. 

3.9. Initial and boundary conditions 

The problem is considered to be an initial-value problem in t for t > 0, and a 
boundary-value problem in 8 for 8 from 0 to n. With the equations primarily defined 
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by (3 .11) ,  (3 .16) ,  (3 .19) ,  (3.20) and (3.44) the unknown functions to be solved for are 
R, p, v, and v,. 

The boundary conditions defined a t  0 = 0 and x are 

(3.57) 

which simply reflect the symmetry of the system a t  the two points. 

surface density. Thus for 0 from 0 to x the initial conditions are 
For the sloshing mode the shell motion starts with a non-uniform distribution of 

R = R,, (3.58 a )  

p =p,[l-d cos0+BPn(COS0)], (3.58 b) 

and v, = v, = 0, (3.58 c )  

where in (3.583) E and A represent the initial disturbance and core displacement 
respectively, and P, is a Legendre polynomial. 

The bubble mode of oscillation occurs when the shell starts with a non-spherical 
form. The corresponding initial conditions are 

R = R~+ER,P,(cos~) ,  (3.59 a )  

and 

p = p L ( l - A  C O S ~ ) ,  

v, = 21, = 0, 

(3.59 b) 

(3.59 c )  

for 0 from 0 to x ,  where B and A represent the initial distortion and core displacement 
respectively, and RL and pi are determined as follows. RL is calculated by requiring 
that ( 3 . 5 9 ~ )  satisfy the conservation law for the core volume defined by (3.40).  Using 
this value of RL we substitute ( 3 . 5 9 ~ )  and (3 .593)  into (3.39) to find the value of pi 
which is consistent with the conservation law for the shell mass. 

4. Linear analysis 
Let us consider a thin concentric liquid shell placed a t  the origin. In equilibrium 

the core pressure P is 4u/R,, balancing an inward-pointing pressure force due to the 
surface tension of the shell given by - Ap = 4u/R,. 

Consider now that the shell is under infinitesimal disturbance : 

R = R , + R ,  p = p,+pu' ( 4 . l a ,  b) 

v, = v:, v, = v',. (4.1 c, a) 
The disturbance falls into either of two types: the sloshing mode or the bubble 
mode. 

4.1.  Sloshing mode 

In  this case the liquid essentially shuffles back and forth in the tangential direction. 
The normal movement of the shell can be neglected. Therefore we let v', and R' be 
zero, and  tan^ in (3 .4)  is also zero. 

Using (3.22)-(3.25) we find that Ap in (3 .38)  is equal to -4u/R,  with an error of 
the order of a t  most P. Substituting this result into (3.44) we find that P is 4u/R, 
plus a similar error. Neglecting errors of this magnitude we find that Ap and P cancel 
each other just  as they do in the equilibrium situation. It follows that the right-hand 
side of the normal momentum equation (3 .20)  is zero with an error of 0(a2), 
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reaffirming our assumption that vh is zero. Thus the right-hand side of (3.16) is also 
zero, reaffirming our other assumption that R' is zero. Using (3.22)-(3.25) and (3.37) 
to obtain the mean pressure p ,  and substituting the result into the tangential 
momentum equation (3.19), we find 

(4.2a) 

for which the eigenfunctions are the Legendre polynomials {P,} with the 
corresponding eigenvalues {n(n+ l)}. The continuity equation (3.11) yields 

(4.2b) 

Differentiating (4.2b) with respect to t and substituting (4.2a) we obtain the wave 
equation 

By assuming a solution 
pf = Ep, cos otPn, 

in accordance with (3.583),  we find that 

w = wo(ts)t[n(n+1)(n-1)(n+2)1t, (4.5) 

where o,, = (a/pR,3);. The corresponding vi can be found by substituting (4.4) into 
(4.2a) 

E W R ,  apn sin wt ~. v' = -~ 
n ( n + l )  ae 

4.2. Bubble mode 

In  this case normal motion is dominant in the shell, although some tangential motion 
is inevitable. 

From (3.22)-(3.25), (3.38) and (3.44) we find that the stJatic components of Ap and 
P cancel each other as before, but there remains a dynamic part due to the distortion 
of the shell. Equation (3.20) becomes, in the linear limit neglecting error of the order 
of 62, 

The kinematic condition (3.16) immediately gives 

aR' , - at - v,. 

(4.7) 

These two equations can be used to solve for vh and R'. But p' is coupled to v:, through 
the continuity equation (3.11) : 

(4.9) 



Centring of a thin liquid shell in capillary oscillations 423 

which differs from (4.26) by an additional term a t  the end of the right-hand side. 
Consequently vi  is also non-zero because of the tangential equation (3.19) which is 
reduced to ( 4 . 2 ~ )  again. 

From (4.7) and (4.8) we find the wave equation 

Assuming a solution of the form 

R = ER, coswtP,, 
we find that 

(4.10) 

(4.1 1)  

(4.12) 

Substituting (4.11) into (4.8) we have 

vh = - WER, sin ot P,. (4.13) 

Using these results we can find from (4.9), after neglecting terms of 0(a2), that 

p' = - 2Eps cos wt P,, 
and from ( 4 . 2 ~ )  that 

apn v: = (+PewRs) sinot -. ae 

(4.14a) 

(4.14b) 

The natural frequencies given in (4.5) and (4.12) can be shown to agree with those 
from the potential theory (Saffren et al. 1982) with errors of O(6'). 

Before closing this Section let us see how the above results obey the conservation 
laws (3.39), (3.40) and (3.54). The results for the sloshing mode do so with errors of 
O ( P ) .  For the bubble mode, however, we need first to correct ( 4 . 1 ~ ~ )  by replacing 
R, with RS and determine the latter by using the conservation of volume equation 
(3.40) (see 3 . 5 9 ~ ) .  It is found that RS differs from R, by a fraction of O(e2) ,  which is 
nonlinear and was justifiably neglected earlier. But this difference is crucial in 
showing that the sum of E ,  and (EP)b is conserved, neglecting ( E p ) ,  with an error 
of O(S2).  Using this RS, (4.1 b )  obeys conservation of mass (3.39) if we correct ,us by an 
amount of O(e2) .  

5. Numerical work and results 
5.1. Dimensionless forms 

For numerical work we scale lengths by R,, and ,u by ,us. Considering the ratio of O(6) 
between the frequencies for the sloshing (4.5) and the bubble (4.12) modes, we assign 
to them different timescales: l/w, where w, = w , d ,  and l / w b  where ob = w0/&,  
respectively. Dimensionless equations can be obtained conveniently by replacing 
l /p  by 6, and v, R, and ,us by 1. For the sloshing mode we let A, be 1/S2, and A, be 
P.  For the bubble mode we let both be 1. The problem depends on three 
dimensionless parameters : the amplitude E ,  the displacement A ,  both lying between 
0 and 1, and the thickness 6 which is much less than 1.  

For the sloshing mode in the tangential momentum equation the pressure gradient 
is of O ( E ) ,  which drives the oscillations in v, and ,u, which are then both of Ofe). In  the 
normal momentum equation Ap is -4/62 + O ( 2 )  while P is 4/a2 + O ( 2 )  ; their sum is 
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thus of O(e2). P enforces the incompressibility of the core but is otherwise inactive. 
A p ,  without the large constant component, cannot excite much motion. Therefore if 
the shell is concentric the effect of A p  is negligible. The curvilinear term v, H in the 
same equation is roughly v i /R ,  i.e. also of O(e2). But when the shell is non-concentric, 
both A p  and ti, H become asymmetric, giving a net force of O(Ae2) leading to a slow 
translation of the shell. Then the tangential pressure gradient must play an 
additional role of redistributing the liquid in order to keep the centre of mass 
stationary. 

For the bubble mode, in the normal momentum equation Ap is -4+  O(e), whereas 
P is 4+0(e2)  such that their sum is of Ole). P again keeps the volume constant. Ap 
without the constant part drives the normal shell motion such that v, and the 
oscillating part of R are of O(e). The oscillation in p is of O(e) according to ( 4 . 1 4 ~ ) .  
Then the tangential pressure gradient is of O(Pe) .  In the tangential momentum 
equation the curvilinear term -v,H is roughly (1/R) (i3/a6) ($.",), i.e. of O(e2) ,  such 
that when e is larger than J2 it  dominates the tangential pressure gradient. When the 
shell is non-concentric this term is of O(Ae2) causing the liquid to drift tangentially 
in one direction. Then A p  plays the additional role of repositioning the shell to keep 
the centre of mass fixed. 

In our earlier work (Lee & Wang 1986) the equations are akin to those of the 
bubble mode, but they include no tangential pressure gradient. As we have just seen, 
when the wave amplitude is large the latter is negligible, justifying the previous 
approximation. 

5.2. Numerical procedure 
Since we have a fully nonlinear system here the question of numerical stability is not 
easy to answer. Therefore the choice of the numerical procedure is mostly heuristic. 
The spatial grid is formed by dividing the range [0,7c] of 6 into equal parts. 
Integration in 6 is done by the Simpson rule. Derivatives with respect to 6 are 
expressed by central differences with exceptions described later. Integration in t is 
done by fourth-order Rung-Kutta method with a possible modification also 
described later. Note that computer time is not a concern because we carried out the 
calculation on a personal computer. 

The performance of the program is checked by seeing that (a) the program can 
reproduce the linear results described in $ 4  when the wave amplitudes are small; ( b )  
the conservation laws (3.39), (3.40) and (3.54) are satisfied a t  all times; ( c )  the results 
for a shell in oscillation are independent of the choice of the origin, provided that the 
origin is not far from its geometrical centre ; ( d )  the centre of mass remains stationary 
at all times ; and ( e )  a non-concentric stationary shell remains stationary irrespective 
of the choice of the origin. 

To satisfy condition ( a ) ,  we first smooth the functions f in (3.15), f ,  in (3.13), and 
f,,i in (3.27) at 0 = 0 or 7c where they have removable singularities, by interpolation, 
making use of the boundary conditions (3.57) and the symmetry properties of the 
system there. Moreover, given the spatial step A@, the choice of the time step At 
depends on the mode of oscillation. From the linear theory the wave equation (4.3) 
for the sloshing mode is biharmonic, involving a second derivative in t and a fourth 
derivative in 6.  On the other hand (4.10) for the bubble mode involves second 
derivatives in both t and 6.  Therefore the time step for the sloshing mode and the 
bubble mode should be of 0(AO2) and O(AB), respectively, the integration for the 
former being much slower. Furthermore, for stability the Runge-Kutta method has 
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to  be modified for the sloshing mode by rewriting the first step of the four-step 
method as 

where y means R, p ,  v, or vn, and i and j denote spatial and temporal points. For the 
bubble mode no modification is necessary. After implementing these we can 
reproduce the linear results which also satisfy condition ( b ) .  

When the shell in oscillation is concentric but displaced from the origin, its 
geometrical centre and centre of mass both drift slowly in time, violating conditions 
( c )  and (d ) .  One reason is that although the spatial grid points are equally spaced in 
the interval [0, x], they are actuaIIy not so on the surface of a displaced shell even if 
the shell is perfectly spherical. To remedy this we correct the central-difference 
scheme. The representation for ay/a0 can be shown to the second order to  be 

By representing the second term on the right using the usual central difference and 
moving it to the left, we have a representation of ayfa0 to 0(AO2). Similarly we 
can obtain i32y/a02 to O(A@). I n  practice, we find by some testing that only 
aR,, ,/M, azR,, ,/aO2, and appla0 need the correction. After doing so for the concentric 
shell, the geometrical centre no longer drifts relative to the centre of mass, but the 
latter still drifts. More generally, for the non-concentric shell the geometrical centre 
may drift, but the centre of mass also drifts in violation of condition ( d ) .  When it 
drifts too far the program suffers as shown by the increasing errors in the 
conservation laws. 

An error inevitably arises from the asymmetry about the origin because of the way 
that we have defined R. As a remedy we impose a uniform artificial acceleration 
a, = -21 Az 1 /Atz on the shell to cancel the drifting tendency, where Az is the 
displacement of the centre of mass in the preceding time step. It turns out that a, and 
its cumulative displacement are both small at all times. I n  general a, cannot cause 
any side effect because without it the results are practically unchanged except for the 
drifting. By preventing the drift, to satisfy condition (d) ,  the program can run 
longer. 

Finally, for condition ( e )  the shell sits still for about a cycle or so before some 
instability leads to large errors. The program is designed to deal with either a sloshing 
or a bubble mode but not both. When e = O  it fails because it finds both in the 
background noise. We choose to ignore this problem since the shell can stay still long 
enough to show a steady state. Also for the case of a shell in oscillation this kind of 1 

instability does not appear. 

5.3. Numerical results 
I n  the nonlinear regime the disturbance which is initially represented by a Legendre 
polynomial becomes only approximately periodic in time, even if the shell is 
concentric and centred a t  the origin. No matter how long we let the iteration 
continue, exact periodicity never occurs. This is not surprising, for it frequently 
happens when a nonlinear wave equation is treated numerically as an initial-value 
problem (Zabusky 1984). Here we shall overlook this irregularity, being more 
interested in the centring behaviour of the shell than in the precise waveforms. 

To study the centring dynamics we focus on Z , ,  the position of the geometrical 
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FIGURE 3. Centring for the n = 2 sloshing mode, 6 = 0.5, S = 0.1, A = 0.1. Plot of 2, versus t .  
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FIGURE 4. Centring for the n = 2 bubble mode, E = 0.05, 6 = 0.1, d = 0.1. Plot of 2, versus t.  

centre relative to the centre of mass. Only the lowest (n  = 2) modes will be 
considered. 

For the sloshing mode we find that 2, undergones a fast oscillation in time about 
some mean position as a linear consequence of the wave, and that this mean position 
in turn undergoes a slow oscillation in time about zero (which means the centre of 
mass) as a nonlinear consequence. Obviously the slow oscillation should be 
int,erpreted a a centring effect. In figure 3 we plot 2, versus t for e = 0.5 ,s  = 0.1, and 
A = 0.1, and see that i t  behaves like a simple harmonic oscillator on the slow 
timescale. 

For the bubble mode 2, behaves similarly. In  figure 4 we show 2, versus t for 
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(c) 52 versus E ,  S = 0.1, A = 0.1. 

(c) 52 versus E ,  6 = 0.1, A = 0.1. 

FIGURE 5. n = 2 sloshing mode: (a) 52 versus A ,  E = 0.5, S = 0.1; (b) B versus 8, E = 0.5, A = 0.1 ; 

FIGURE 6. n = 2 bubbles mode: (a) 52 versus A ,  E = 0.05, S = 0.1; (b) 52 versus 8, E = 0.05, A = 0.1 ; 
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FIGURE 7 .  Typical wave profiles for the n = 2 sloshing mode of a non-concentric shell with origin 
a t  the centre of mass: e = 0.5, 8 = 0.1, A = 0.3, dimensionless wave period T = 1.8. ( a )  t = 0, 
( 6 )  3", ( c )  P, (4 Y', ( e )  T .  

6 = 0.05, 6 = 0.1, and A = 0.1. It resembles figure 3 except that  the ratio of the fast 
frequency to the slow one seems to be larger. For higher values of c the program runs 
smoothly until a t  some point errors rapidly grow. The difficulty is numerical and 
occurs when the nonlinearity is too high, because then the spatial profile of the wave 
carries higher Legendre components, requiring more spatial grid points and a smaller 
time step. 

The difficulty occurs for the bubble mode but not for the sloshing mode for the 
following reason. To compare the nonlinearity of the two modes we need to compare 
their wave amplitudes on the same basis. If we use 6 to represent the amplitude of 
the sloshing mode, we have to use e/S for the bubble mode. Thus the waves described 
by figure 3 and figure 4 have comparable nonlinearity and energy. We cannot make 
the amplitude for the sloshing mode much higher because i t  is limited by the shell 
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FIGURE 8. Typical wave profiles for the n = 2 bubble mode of a non-concentric shell with origin a t  
the centre of mass: B = 0.05, S = 0.1, A = 0.15, dimensionless wave period T = 2.2 .  (a )  t = 0,  
( b )  3', (c) P, (4 P, (el T. 

thickness, but we can do so for the bubble mode, which leads to the numerical 
difficulty. I n  our earlier work (Lee & Wang 1986) the jet collapses fast enough, long 
before a numerical instability of this type can develop into a problem. 

We seek to find the slow frequency 62 as a function of c ,  8, and A in a parameter 
study, by running the program repeatedly. Typically, for a given combination the 
run time for determining the slow oscillation pattern is about one day for the sloshing 
mode and a few hours for the bubble mode. 

For the sloshing mode we first let E = 0.5 and 6 = 0.1, and run the program trying 
several values of A to look for the corresponding values of IR. The results in figure 5 ( a )  
show that when A is small f2 is independent of A .  We conclude here that the slow 
oscillation obeys the linear Hooke's law, with deviation only when the core 
displacement is too large. We next let 6 = 0.5 and A = 0.1, and run the program with 
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various values of S to find the corresponding values of 52. The results shown in figure 
5 ( b )  suggests that 52 is insensitive to 6 as well. Finally we let S = 0.1 and A = 0.1, and 
vary E .  The results in figure 5 ( c )  indicate that 52 is proportional to e :  

0 = 0.6e, (5.1) 

where the constant can be obtained from the plot. 

relation between 52 and c: is clear: 
We show a similar sequence for the bubble mode in figure 6. I n  figure 6 ( c )  the linear 

52 = 1 . 3 ~ .  

Higher modes require a finer spatial grid in the program and a longer run time. 
However, the main purpose of this investigation is to understand the physics of the 
system. As we shall see, this purpose can be served sufficiently by studying the lowest 
modes. 

Finally, in figure 7(a-e) we show t’he profiles of a non-concentric shell in the 
n = 2 sloshing-mode oscillation in the first wave cycle. Similarly, in figure 8 (u-e) we 
show those for the n = 2 bubble mode. 

6.  Viscous effects 
In order to consider the effects of small viscosity we need the mathematical 

approach usually used in fluid mechanics. Our results in dimensional forms from the 
thin-sheet model will be adapted for this purpose. 

For a free mass of liquid in air or a vacuum in the absence of gravity, using the 
Navier-Stokes equation and the continuity equation we can derive the energy 

whcre u and p are the velocity field and the viscosity of the liquid, respectively, V is 
the volume of the liquid bounded by the surface S, d/dt is the total time derivative, 
and summation convention is used in the tensor form on the right-hand side. In  the 
bracket on t,he left-hand side the volume integral is the kinematic energy T of the 
liquid, and the surface integral is the potential energy I J  due to the presence of 
surface tension, such that the left-hand side represents the rate of change of the total 
energy of the liquid in time. The change is brought about by the viscous damping 
represented by the right-hand side, which is the negative of the dissipation function 
D. In the case of an oscillatory motion of the liquid we can evaluate the damping rate 
h if the rate is much less than the oscillatory frequency. Following a method of Lamb 
(1945) we find the linear inviscid solution of the system, let it  decay like exp ( - A t ) ,  
substitute it into (6.1), average the equat’ion over an oscillatory cycle and use the 
smallness of h to obtain 

= < D ) / 4 ( T ) ,  (6.2) 

where ( ) means the average. In  the following we study the damping of the wave and 
that of the core oscillation separately owing to their disparity in timescales. 

First we note that the frequency of the wave is not sensitive to  the position of the 
core, according to our numerical results here and our earlier analytical results using 
potential theory (unpublished). For damping, if the dissipation is increased by O(A) 
on one side of a non-concentric shell it must be decreased by the same on the other, 
such that the net correction to h is at most of O(A*). So if A < 1, to  study the damping 
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of the wave we can consider the shell as concentric. Similarly, we can argue that the 
errors in the frequency and damping rate of the wave due to neglecting nonlinearity 
are of O(e2). 

For the wave the trial solution required to substitute into (6 .2)  can be found from 
potential theory. But we can obtain an approximate solution in the thin-shell limit 
from the available result of the thin-sheet model. For the sloshing mode vi is given 
by (4.6) and vi is zero in the model. To restore the potential flow we ( a )  let u = 0 and 
v = vi, both being considered as functions of r and 6; ( b )  require that V - u = 0 to find 
u to O ( [ )  where we have defined r = R,+[; ( c )  require that, V x u = 0 to find the 
correction of v to O(<);  and finally ( d )  substitute u and v into (6 .2)  to find A. The flow 
field is thus given to O ( [ )  by 

u = -CUR, sinwt-PP,, (6 .3)  
< 

RS 

and 
& W R ,  sinot ”( 1 - &), v =-- 

n(n + 1) 36 

with the accuracies being sufficient for the evaluation of D ,  which involves only first 
derivatives of u and v with respect to 5. They agree with the results of the potential 
theory (Saffren et al. 1982) in the thin-shell limit to O ( [ ) .  Putting (6 .3)  and (6 .4)  into 
(6 .2)  we find that 

v(2n2+2n+ 1) 
A =  , (6.5) 

R,2 
where v = p/p is the kinematic viscosity of the liquid. 

neglecting vi of 0(a2) from (4.146) we find that 
I n  a similar manner for the bubble mode, starting with v; from (4.13) and 

2v(n2 + n + 3 )  
A =  

R,2 

Thus, when viscosity is small but finite, the damping rate for either type of wave is 
proportional to v/Ri, which is similar to that of a liquid drop in air (Lamb 1945). 

Next we try to find the damping rate A of the core oscillation using an equivalent 
of (6.1). This effort is complicated by the fact that the slow frequency is proportional 
to  the wave amplitude and therefore decays naturally. In this study we shall only 
consider the situation in which Q is kept constant by maintaining a steady wave 
using an external excitation, e.g. a modulated sound field in acoustic levitation 
(Marsten & Apfel 1980). In  the first trial assume as usual that A is much less than 
the core oscillation frequency Q, so that we can use (6 .2) .  As we have neither an 
explicit expression for the potential energy nor a ‘linear inviscid’ solution for the 
core motion we need to do some modelling. Let us imagine that the system is 
averaged over a wave cycle, so that the fast-changing part of the wave is filtered out 
but the average of its nonlinear effect remains in the form of a potential well to drive 
the core motion. The two interfaces can be considered as essentially spherical. 

The linear slow-changing inviscid flow associated with the core motion is 
reconstructed as follows. Consider that p = ,us( 1 - d cos 0) relative to  the geometrical 
centre. If the origin is chosen to be a t  the stationary centre of mass, then p relative 
to the origin is given approximately by the same expression and the geometrical 
centre is located a t  2, = $AR,, neglecting O ( A 2 ) .  This relation between A and 2, 
guarantees that the centre of mass remains stationary when A changes in time. 
The translational velocity of the geometrical centre along the z-axis is given by 
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vT = $R,dA/dt. In the thin-sheet model the tangential and normal velocities are then 
v, = vi -vT sin 8 and 0, = vT cos 8, respectively, neglecting O(A2), where the presence 
of a correction in v, is necessary so that p, v, and v, may be consistent with the 
continuity equation (3.11). Since we expect the liquid to translate along the shell as 
the latter translates in order to maintain the centre of mass fixed, we correct v, but 
not v,. Using (3.11) and neglecting O(A2), we find vi and obtain 

and 

1 dA 
6 dt 

1 dA 
3 dt 

v, =--RR,sint3, 

V ,  = --R, C O S ~ .  

To restore the potential flow we let u = v, and v = 0,. Applying V . u  = 0 and 
W x u = 0 as before we find u to O ( 0 .  As our numerical calculation has established 
that A is oscillatory we let A = A, cosnt. 

The evaluation of the kinetic energy of the slow oscillation is easy ; but that of the 
potential energy is non-trivial. However the latter is not necessary because for an 
oscillatory system ( T )  and ( U )  are equal except for a constant which comes from 
the equilibrium state and which can be set to zero, where now ( ) means averaging 
over a slow cycle. Thus for the core oscillation we find 

( T )  = ( U )  = &Q2A; Ri D,, (6.9) 

and (D) = 4&~52~4;1tR~D,. 

According to (6.2) the damping rate is thus 

15v 
R,2 ’ 

A = - -  

(6.10) 

(6.11) 

if the condition that A is much less than SZ is satisfied. Note that A is proportional 
to v/Rt too, but is independent of the mode type of the wave. 

To check whether Lamb’s method for the damping rate is indeed applicable 
we look a t  the numbers for a typical case. Let us consider a water shell 
with p = 1 gm ~ m - ~ ,  r = 72 dynes cm-l, p = 0.01 gm cm-ls-l, R, = 0.1 em, and 
D, = 0.01 em. If the shell is in the n = 2 sloshing mode with a wave amplitude E = 0.5 
we have w = 294 s-l from (4.5), f = w / 2 n  = 47 s-l, h = 13 s-l from (6.5), 52 = 25 s-l 
from (5.1) (after multiplying its right-hand side by w,/& to obtain the dimensional 
form), F = Q/2n = 4 s-l, and A = 15 s-l from (6.11). If the shell is in the n = 2 
bubble mode with e = 0.05 we have w = 2400 s-l from (4.12), f = w/2n = 382 s-l, 
h = 18 s-l from (6.6), 52 = 55 s-l from (5.2) (after multiplying its right-hand side by 
w,/& to obtain the dimensional form), F = 52/2a = 9 s-l, and A = 15 s-l as before. 
We observe that for the core oscillation the damping rate is only marginally smaller 
than the frequency, comparing A with 52, implying that the use of Lamb’s method 
is questionable. 

However, we can remedy the shortcoming of our result by introducing a simple 
model. Let us consider T, U and D in (6.9) and (6.10) without averaging over a slow 
cycle ( ). A is then a function of t  but no longer given by A, cos52t. U is given by the 
right-hand side of (6.9) after replacing A t  with 2A2, assuming that it behaves like the 
potential well of a simple harmonic oscillator. T and D are given by the right-hand 
sides of (6.9) and (6.10) respectively after replacing Q2A; with 2(dA/dt)2, since both 
depend on the square of the velocity field. Assuming that for the slow oscillation the 



Centring of a thin liquid shell in capillary oscillations 433 

rate of change of the total energy T + U is equal to - D, we find the equation for a 
damped harmonic oscillator. It has a solution for A of the form exp ( - a t )  where 

a = A + ( A * - P ) ) ~ ,  (6.12) 

in which A is given by (6.11). When A is small enough such that the second term on 
the right-hand side of this formula is approximately equal to iQ, we recover our 
earlier result (6.11). For the typical case that we have considered we find that 
A = A,exp ( -  15t) cos (21t) for the sloshing mode and A = A ,  exp ( -  1%) cos (53t) for 
the bubble mode. These are not very different from those that we have obtained using 
Lamb’s method. The frequency is not drastically changed by the viscosity in either 
case, and the core goes to the centre rapidly because the damping is indeed heavy, 
with the oscillations barely visible after a slow cycle or so. The objection may be 
raised that Q and A are still too close for the viscous result to be valid. But it may 
also be argued, as we tend to believe, that since the improved model cannot produce 
much difference in this particular case, Lamb’s method is a good approximation in 
spite of the shortcoming. However, this is only a reasonable conclusion without a 
rigorous basis. 

More generally, (6.12) can be real or complex, depending on Q, which is 
proportional to E .  If E is small enough a becomes real and the core motion towards 
the centre of mass is purely exponential. The smaller E is, the more slowly the 
centring occurs. If e goes to zero one of the roots of a becomes zero and the core 
stays where it is. This simply means that without a wave there is no centring. 

I n  the context of the present study, inviscid approximation is justified in the 
nonlinear regime if the Reynolds number, defined as wr,~R,/v,  is much greater than 1, 
where we have compared the inertial term with the viscous term in the momentum 
equation, and where r,~ is the particle displacement amplitude of the wave of O(sR,) 
(see (4.6) or (4.13)). This criterion is the same as the damping rate for the slow 
oscillation in (6.11) being much smaller than the slow frequency in (5.1) or (5 .2)  in 
dimensional forms. 

I n  experiments in which shell centring is observed, no one has ever systematically 
looked for and noticed any core oscillation. According to our model, core oscillation 
is a highly transient phenomenon because of viscosity. However, the inviscid result 
can be tested by first levitating the shell acoustically and maintaining a constant 
wave amplitude on i t  by modulating the sound to keep it from breaking. The core 
will be somewhat displaced upward by gravity. If we further impose a sinusoidal 
acceleration on the shell, e.g. by placing the whole apparatus on an oscillating 
platform, the core will oscillate up and down relative to the shell. The core oscillation 
should reach a resonance when the frequency of the platform is near those predicted 
by our theory. 

7. Concluding discussion 
According to our inviscid study the frequency ratio of the core and wave 

oscillations is proportional to  the wave amplitude, and the ratio of their velocities is 
proportional to the core displacement amplitude. Thus to attack the problem using 
a perturbation analysis requires a lengthy multiparameter expansion in E and A .  On 
the other hand the thin-sheet model is conceptually simple and can be handled with 
a fairly simple program. 

The algorithm that we have used is mostly ad hoe, but there are reasons to believe 
that the results are valid. First, we have been very careful to test whether the system 
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behaves correctly in predictable situations. Secondly, the results for the unknown 
situations of interest, i.e. those involving a non-concentric shell, are supported by the 
following physical picture. 

For the n = 2 sloshing or bubble mode, if the core is displaced, the lighter side of 
the shell must oscillate harder to keep the centre of mass of the whole shell stationary 
in the absence of an external force. Therefore, on the average over a wave cycle the 
lighter side is a region of lower pressure according to the Bernoulli effect, causing the 
liquid to drift from the heavy side to the light side. As the force that causes the drift 
is opposite and arguably also proportional to the displacement, Hooke’s law is the 
logical consequence. Therefore the drift is sinusoidal in time about the centre of mass 
rather than, say, exponential. Exponential behaviour can only come from viscosity. 
The same principle holds for higher modes. 

Quantitatively, when the shell in oscillation is non-concentric, with the core 
displaced upward by A ,  the difference in Bernoulli pressure between the lower and 
the upper halves of the shell is of the order of +pu - u multiplied by A. Since u in both 
mode types is of O(mR,)  (see (4.6) and (4.13)), and the shell has a cross-sectional area 
of O(R,D,), an internal force of O(pw2e2R,3AD,) pushes the liquid upward. The 
corresponding acceleration of the liquid, which has a mass of O(pD,R,2), is of 
O( -R,d2A/dt2), which is opposite in sign to the displacement as explained earlier. 
Using Newton’s law and assuming that A is proportional to exp ( - i8t)  we find that 
52 is of O(OE). This result, if cast into dimensionless form, is consistent with (5.1) for 
the sloshing mode and (5.2) for the bubble mode. 

In one of the experiments (Trinh 1983) the liquid shell is leviated acoustically 
against gravity without breaking. (Note that without support the shell undergoes a 
free fall and experiences a zero-gravity condition.) It is interesting to examine the 
strength of the centring mechanism versus that of gravity. With the shell prevented 
from falling, the buoyancy effect due to gravity tends to force the core to the top, 
leading to rupture of the shell. If the shell is in capillary oscillation, the light side a t  
the top must oscillate harder than the heavy side even though there are external 
forces, otherwise the shell will exert an additional force on itself. Then, on the 
average over a wave cycle, the lower side has a Bernoulli pressure exceeding that of 
the upper side of the order of ipu * u times A ,  according to our earlier argument. In 
a dynamic equilibrium after the slow oscillation subsides, this difference must 
support the hydrostatic pressure due to gravity between the top and the bottom of 
the shell of the order of pgR,. Since u is of the order of EoR,, the equilibrium condition 
becomes ” 

Y Ae2 - - 
w2Rs’ 

where g is taken as 980 ern sP2. For the typical case we have mentioned R, = 0.1 cm. 
In order that the shell does not break, A should be less than, or a t  most of the 
order of, one when a reasonable value of c is used. For the n = 2 sloshing mode 
w = 295 s-l and E = 0.5 such that A N 0.5, which is less than one. For the n = 2 bubble 
mode w = 2400 s-l and E = 0.05 such that A - 0.7,  which is still within the safety 
margin. Therefore the centring mechanism is strong enough to support the liquid 
shell against the action of gravity. 

Finally in figures 5 (b )  and 6 ( b )  the slow frequency seems to increase slightly with 
6. But the model cannot take into account the fact that the flow also becomes less 
uniform across the thickness. Higher-order corrections in S are then required. In the 
extreme case in which the shell is so thick that the core is like a bubble in an infinite 
medium one can easily imagine that the centring force is non-existent. But it has 
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been demonstrated that in a thick shell levitated acoustically against gravity, the 
core floating to the top can remain submerged below a thin layer of liquid if the shell 
is excited into a strong resonant oscillation (E. Trinh 1984, private communication). 
Vigorous capillary wave motion is visible on the layer, while the rest of the shell is 
relatively quiescent. The distribution of wave activity in the shell is consistent with 
our notion that the lighter side oscillates harder. Although the thin-shell model is no 
longer valid here, our physical picture is still applicable. However, in this case the 
effect is strong only when the bubble is close to the surface. It prevents the bubble 
from escaping the drop, but lacks the strength to really push the bubble towards the 
centre. If one agrees that ‘centring’ means the tendency for the core to go to the 
centre, then it is more appropriate to call this situation ‘trapping’ rather than 
‘centring ’ of the bubble. It is therefore reasonable to say that centring is less effective 
when the shell is thick. 

This work represents one phase of research carried out a t  the Je t  Propulsion 
Laboratory, California Institute of Technology, Pasadena, under contract with the 
National Aeronautics and Space Administration. We are grateful to Dr E. Trinh for 
showing us the video tapes of his experiment, some of which have not been published. 
We also wish to thank Dr J. Kendall for his comments, and Mr J. Wilson for editing 
the manuscript. 
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